MATHS CALCULATION POLICY

Mount Pleasant Primary School

Foundation Stage- By the end of FS we expect children to:			
Addition	Subtraction	Multiplication	Division
Numicon shapes, 5/10 frames are introduced straight away and can be used to: - Recognise amounts - Identify 1 more/less - Combine pieces to add - Find number bonds - Add by counting on Children can record this by printing or drawing around Numicon pieces. Children begin to combine groups of objects using concrete apparatus. (cubes, counters, numicon, fingers) Construct number sentences verbally or using cards to go with practical activities. "There are 2 cars in the carpark and 1 more pulls in. How many altogether?" Children are encouraged to read number sentences aloud in different ways. "3 add 2 equals 5" " 5 is equal to 3 add 2" Children make a record using marks, pictures,	Children begin with mostly pictorial representations. $\begin{array}{l\|l} \mathrm{xxx} & \mathrm{xx} \end{array}$ Concrete apparatus is used to relate subtraction to taking away and counting how many objects are left. Concrete apparatus models the subtraction of 1 object away from 5. - - 0 - X 5-1 = 4 or Construct number sentences verbally or using cards to go with practical activities. "In the fruit bowl there are 4 bananas, I have eaten 1. How many are left?" Children make a record in pictures, words or symbols of subtraction activities already carried out. Solve simple problems using fingers. Number tracks can be introduced to count back and find one less alongside 5/10 frames. "What is 1 less than 9? 1 less than 20?"	The link between addition and multiplication is introduced through doubling. Numicon is used to visualise the repeated adding of the same number. These can then be drawn around or printed as a way of recording. A range of objects are also used to add equal groups such as fingers, cubes, toys. Children begin with mostly pictorial representations: "How many groups of 2 are there?" Real life contexts and use of practical equipment to count in repeated groups of the same size: "How many wheels are there altogether?" "There are 3 sweets in one bag. How many sweets are there in 5 bags?"	The ELG states that children solve problems, including doubling, halving, and sharing. Children need to see and hear representations of divisions as both grouping and sharing. Division can be introduced through halving. Children begin with mostly pictorial representations linked to real life context. Grouping Model " 12 children get into teams of 4 to play a game. How many teams are there?" Sharing Model "I have 6 sweets. I want to share them with my friend. How many will we have each? Part-part whole model can be used alongside to use concrete objects or marks.

Solve problems using fingers.

$$
5+1=6
$$

Number tracks will be introduced alongside to count up on and find one more.

```
1 1
```

"What is 1 more than 4? 1 more than 13?"

Number lines are used alongside practica
apparatus to solve addition calculations and word problems.

Children will need opportunities to look at and talk about different models and images as they move between representations

Games and songs can be a useful way to begin using vocabulary involved in addition. E.g. Alice the Camel.

Vocabulary

More, add, plus, total, addition, altogether
count on, equal to, as many as, is the same as

Number lines are used alongside number tracks and practical apparatus to solve subtraction calculations and word problems. Children coun back under the number line.

Children will need opportunities to look at and

 talk about different models and images as they move between representations.Games and songs can be a useful way to begin using vocabulary involved in Subtraction e.g. Five little men in a flying saucer.

Vocabulary

Less than, count back, takeaway, fewer, subtract, minus, how many have gone/or are left?

Count aloud and with objects in 1 s 2 s 5 s and

 10sChildren are given multiplication problems set in a real life context. Children are encouraged to vislualise the problem
"How many fingers on two hands? How many sides on three triangles? How many legs on four ducks?"

Children are encourgaed to read number sentences aloud in different ways " 5 times two makes 10. " " 10 is eqaul to five multiplied by two."

Vocabulary

The same, equal amounts, double, doubling, groups of, sets of, lots of, multiply

Children are to give verbal division number sentences with a verbal explanation and then have a go at recording the calculation that has been carried out.

Vocabulary

Share, sharing, equally, the same amount, group of,
Half, halving, 2 equal groups/parts, how many, same as.
Dived into/by, left, left over.

		-= signs and missing numbers		
$3+4=\square$	$\square=3+4$	7-3= \square	$\square=7-3$	
$3+\square=7$	$7=\square+4$	$7-\square=4$	$4=\square-3$	

| Compensation method- $35+9=$
 Adjusting (may not be shown on a
 number line)
 Add 9 or 11 by adding 10 and adjusting by
 1
 $35+9=44$
 (teaching- Bar model, arrows cards and
 dienes equipment | | How many stamps would you have if you
 bought four books of stamps, with each having
 10 stamps in it? |
| :--- | :--- | :--- | :--- |

Summer- Not crossing the tens boundary. Start with the least significant digit first. (3 digits). Then move to crossing the tens boundary.
$+346$
$\underline{223}$
$+346$
$\frac{225}{571}$
$\frac{571}{1}$

Adding Fractions

Add fractions with the same denominator:
$3 / 8+1 / 8=4 / 8$
Add fractions to make 1
$1 / 4+\square=1$

Note- For time calculations and time problems
(Use the number line method-counting on)
School starts at 8.55. We work for 1 h

45m.

What time is break?
$+0.05 \mathrm{~h} \quad+0.40 \mathrm{~h}$

10.40

Counting on method for adding time

-48
319

Summer- Carrying. Start with the least significant digit first. 3 digits and 2 digits

$$
\begin{array}{r}
5 \\
3617 \\
-\quad 48 \\
\hline 319
\end{array}
$$

Subtract Fractions

$3 / 8-1 / 8=2 /$

Note- For time calculations and time problems
(Use the number line method - counting back)

The school fair starts at 11 o'clock. It takes me 1 hour and 45 minutes to walk to school. What time do I need to set off?

$-0.15 h$

- 0.30h
-1.00h
Counting back method for subtracting time

Summer - (compact method)

36

$\mathrm{x} \quad 4$
144

2

Problem solving in context

I need 32 g butter to make one cake. How
much butter will I need to make 4 cakes for
the school fair?

Summer - Short Division (in the context of problem solving). Rounding up and down

Example - Tamara needed 76 plastic cups for her party. They came in packs of 6 . How many packs did she need?
 Round up to 13

Year 4 - By the end of year 4 we expect children to:			
Addition	Subtraction	Multiplication	Division
Add the nearest multiple of 10, then adjust Continue as in Year 3 but with appropriate numbers e.g. $163+29$ is the same as $163+$ 30-1 Column Addition Compact method- up to four digits The carried digit is in the correct column. Decimal numbers in the context of money and metric units. Carry in the ones column first, then extend to tens column. $\begin{array}{r} 346 \\ +\frac{225}{571} \\ \hline 1 \\ +\quad \begin{array}{r} 3587 \\ \frac{675}{4262} \\ 111 \end{array} \\ +\quad \frac{3587}{\frac{2675}{111}} \end{array}$ Extend to decimals in the context of money (vertically) $£ 2.50+£ 1.75=£ 4.25$ $£ 2.50$	Subtract the nearest multiple of 10, then adjust. Continue as Year 3 but with appropriate numbers. $178-69$ is the same as $178-70+1$ Complementary addition Find a small difference by counting up e.g. $5003-4996=7$ Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a multiple of 1000 or 100 E.g. 2000-1865 Compact Column Subtraction - 3 digits and 3 digits. structured progression- carrying from 10, then 100s $\begin{array}{r}487 \\ -\quad 264 \\ \hline 223 \\ \hline\end{array}$ $\begin{array}{r} 5 \\ 3617 \\ -148 \\ \hline 219 \\ \hline \end{array}$	Autumn Short multiplication Multiplying a number with up to 2 digits by a single digit. Spring Short multiplication Multiplying a number with up to 3 digits by a single digit. $\begin{array}{r} 136 \\ \times \quad 4 \\ \hline 544 \\ \hline 12 \end{array}$ Summer Multiplying a decimal to one decimal place. $\begin{array}{r} 12.5 \\ \times \quad 2 \\ \hline \frac{25.0}{1} \end{array}$	Autumn - Short Division (no remainders3 digits divided by a single digit) $252 \div 7$ $7 \longdiv { 0 - 3 - 6 }$ Spring - Short Division (remainders - 3 digits divided by a single digit) $\begin{aligned} & 256 \div 7 \\ & 7 \overbrace{2^{2} 5^{2} 6}{ }^{4} r 4 \end{aligned}$ Summer - Short Division (remainders expressed as a fraction -3 digits divided by a single digit) $\begin{gathered} 256 \div 7=364 / 7 \\ 7-\frac{036}{2^{2} 54} r 4 \end{gathered}$

	Year 5 - By the end of ye	5 we expect children to:	
Addition	Subtraction	Multiplication	Division
Add or subtract the nearest multiple of 10 or 100 , then adjust mentally	Subtract the nearest multiple of 10 or 100, and then adjust.	Autumn	Autumn
		Short multiplication	Short division
Continue as in Year 4 but with appropriate numbers e.g. $458+79=$ is the same as 458 $+80-1$	Continue as in Year 4 but with appropriate numbers. 458-67=	Multiplying number up to 4 digits by a one or two-digit number.	Dividing a 3-digit number by a 1 -digit
	$458-70+3=$		$256 \div 7$
Column Addition	Complementary addition	237	
		$\times 4$	
Compact methods up to 5 digits, decimals and metric Carry in the units column first, then tens after this extend to hundreds and thousands column	Use complementary addition for subtractions where the larger number is a multiple of 1000 and for subtractions of decimals with up to two places incl. amounts of money, e.g. £10.00-£4.63	${ }_{1}^{9} 428$	036 r 4
			$7 \longdiv { 2 { } ^ { 2 5 4 6 } }$
	$+£ 0.07+£ 0.30+£ 5.00$	Spring	Spring
$\begin{array}{r}23587 \\ +\quad 2675 \\ \hline\end{array}$		Long Multiplication	Dividing up to a 4 -digit number by a 1 -digit number.
$2 \underline{262}$		Multiply up to 4 digits by a 2 -digit whole number	
111	Compact Column Subtraction - up to 4	124×26 becomes	Express the remainder as a fraction moving to a decimal (2dp).
	digits and 4 digits, decimals, metric	$\begin{array}{lll} 1 & 2 & \\ 1 & 2 & 4 \end{array}$	
	structured progression- carrying from 10,	$\times 26$	
23587	then 100s	2 4 8	064 r 1
+ 12675	Continue using compact column subtraction	3 12	$4 \longdiv { 2 2 5 1 7 }$
$\underline{36262}$	method. Extend to decimals (same number of decimal places)		Answer: $64 \frac{1}{4}$ or 64.25

111	Introduce taking from the hundreds column.	Problem solving/Reasoning	
Extend to decimals (same number of decimals places) and adding several numbers (with different numbers of digits). Know that decimal points should line up	$\begin{gathered} 29 \\ 1 / \\ 231015 \end{gathered}$	Two step problems	
under each other, particularly when adding and subtracting mixed amounts. Eg, $3.2 \mathrm{~m}+$	-1157	-Alysha eats 8 biscuits a day for the whole of September and October.	
	1148	How many biscuits does she eat altogether?	
	$\begin{gathered} 4 \\ 49.516 \\ -27.28 \\ \hline 22.28 \\ \hline \end{gathered}$	Summer	
		Multiplying Fractions	
Adding Fractions Begin to add related fractions using equivalences, e.g. $1 / 2+1 / 6=3 / 6+1 / 6$	Begin to subtract related fractions using equivalences, e.g. $1 / 2-1 / 6=2 / 6$	Begin to multiply fractions and mixed numbers by whole numbers ≤ 10, e.g. $4 \times 2 / 3=8 / 3=2^{2} / 3 .$	

